
 

 

 

 

 

 

 

 

 

  

Smart Contract Audit Report 
for 

ADMC 



 

Audit Number: 202112021721 

Contract Name: ADMC 

Deployment Platform: Binance Smart Chain 

Contract Address: 0x309Cef934d022E0f41a9ea622673c421f25792EF 

Audit Start Date: 2021.12.01 

Audit Completion Date: 2021.12.02 

Audit Result: Pass 

Audit Team: Beosin Technology Co. Ltd. 

 

 

 

  



 

Audit Results Overview 

Beosin Technology has used several methods including Formal Verification, Static Analysis, Typical Case 

Testing and Manual Review to audit three major aspects of ADMC smart contract, including Coding 

Conventions, General Vulnerability and Business Security. After auditing, the ADMC contract was found 

to have 1 Critical-risk. As of the completion of the audit, all risk items have been fixed or properly 

handled. The overall result of the ADMC smart contract is Pass. The following is the detailed audit 

information for this project. 

Index Risk items Risk level Fix results status 

Token-1 BURNER_ROLE has high permissions Critical Fixed 

Table 1. Key Audit Findings 



 

Risk Descriptions and Fix Results 

[Token-1 Critical] BURNER_ROLE has high permissions 

Description: The BURNER_ROLE in the ADMC contract can call the overridden burnFrom function to burn 

the tokens held by any address. 

 
Figure 1 ADMC main contract (origin) 

Fix recommendations: Delete the overridden burnFrom function in the ADMC main contract to ensure that 

the original virtual burnFrom function in the ERC20Burnable.sol file can be used. 

Fix results: Fixed 

 
Figure 2 ADMC main contract (fixed) 

  



 

Other Audit Items Descriptions 

1. Basic Token Information  

Token name Altan Dornod Mongol Coin 

Token symbol ADMC 

decimals 18 

totalSupply Initial supply is 495 billion (Burnable) 

Token type BEP-20 

Table 2 – ADMC Token Information 

2. Note for ADMC contract users 

Beware that changing an allowance with approve function brings the risk that someone may use both the old and the new 

allowance by unfortunate transaction ordering. It is recommended to use increaseAllowance function and 

decreaseAllowance function to alter allowance. 



 

Appendix 1 Vulnerability Severity Level 

Vulnerability Level Description Example 

Critical Vulnerabilities that lead to the complete 

destruction of the project and cannot be 

recovered. It is strongly recommended to fix. 

Malicious tampering of core 

contract privileges and theft of 

contract assets. 

High Vulnerabilities that lead to major abnormalities 

in the operation of the contract due to contract 

operation errors. It is strongly recommended to 

fix. 

Unstandardized docking of the 

USDT interface, causing the 

user's assets to be unable to 

withdraw. 

Medium Vulnerabilities that cause the contract operation 

result to be inconsistent with the design but will 

not harm the core business. It is recommended to 

fix. 

The rewards that users received 

do not match expectations. 

Low Vulnerabilities that have no impact on the 

operation of the contract, but there are potential 

security risks, which may affect other functions. 

The project party needs to confirm and 

determine whether the fix is needed according to 

the business scenario as appropriate. 

Inaccurate annual interest rate 

data queries. 

Info There is no impact on the normal operation of 

the contract, but improvements are still 

recommended to comply with widely accepted 

common project specifications. 

It is needed to trigger 

corresponding events after 

modifying the core configuration. 

 

  



 

Appendix 2 Description of Audit Categories 

No. Categories Subitems 

1 Coding Conventions 

Compiler Version Security 

Deprecated Items 

Redundant Code 

require/assert Usage 

Gas Consumption 

2 General Vulnerability 

Integer Overflow/Underflow 

Reentrancy 

Pseudo-random Number Generator 
(PRNG) 

Transaction-Ordering Dependence 

DoS (Denial of Service) 

Function Call Permissions 

call/delegatecall Security 

Returned Value Security 

tx.origin Usage 

Replay Attack 

Overriding Variables 

3 Business Security 
Business Logics 

Business Implementations 

1. Coding Conventions 

1.1. Compiler Version Security 

The old version of the compiler may cause various known security issues. Developers are advised to specify 

the contract code to use the latest compiler version and eliminate the compiler alerts. 

1.2. Deprecated Items 



 

The Solidity smart contract development language is in rapid iteration. Some keywords have been deprecated 

by newer versions of the compiler, such as throw, years, etc. To eliminate the potential pitfalls they may cause, 

contract developers should not use the keywords that have been deprecated by the current compiler version. 

1.3. Redundant Code 

Redundant code in smart contracts can reduce code readability and may require more gas consumption for 

contract deployment. It is recommended to eliminate redundant code. 

1.4. SafeMath Features 

Check whether the functions within the SafeMath library are correctly used in the contract to perform 

mathematical operations, or perform other overflow prevention checks. 

1.5. require/assert Usage 

Solidity uses state recovery exceptions to handle errors. This mechanism will undo all changes made to the 

state in the current call (and all its subcalls) and flag the errors to the caller. The functions assert and require 

can be used to check conditions and throw exceptions when the conditions are not met. The assert function 

can only be used to test for internal errors and check non-variables. The require function is used to confirm the 

validity of conditions, such as whether the input variables or contract state variables meet the conditions, or to 

verify the return value of external contract calls. 

1.6. Gas Consumption 

The smart contract virtual machine needs gas to execute the contract code. When the gas is insufficient, the 

code execution will throw an out of gas exception and cancel all state changes. Contract developers are 

required to control the gas consumption of the code to avoid function execution failures due to insufficient gas. 

1.7. Visibility Specifiers 

Check whether the visibility conforms to design requirement. 

1.8. Fallback Usage 

Check whether the Fallback function has been used correctly in the current contract. 

2. General Vulnerability 

2.1. Integer overflow 

Integer overflow is a security problem in many languages, and they are especially dangerous in smart 

contracts. Solidity can handle up to 256-bit numbers (2**256-1). If the maximum number is increased by 1, it 

will overflow to 0. Similarly, when the number is a uint type, 0 minus 1 will underflow to get the maximum 

number value. Overflow conditions can lead to incorrect results, especially if its possible results are not 



 

expected, which may affect the reliability and safety of the program. For the compiler version after Solidity 

0.8.0, smart contracts will perform overflow checking on mathematical operations by default. In the previous 

compiler versions, developers need to add their own overflow checking code, and SafeMath library is 

recommended to use. 

2.2. Reentrancy 

The reentrancy vulnerability is the most typical Ethereum smart contract vulnerability, which has caused the 

DAO to be attacked. The risk of reentry attack exists when there is an error in the logical order of calling the 

call.value() function to send assets. 

2.3 Pseudo-random Number Generator (PRNG) 

Random numbers may be used in smart contracts. In solidity, it is common to use block information as a 

random factor to generate, but such use is insecure. Block information can be controlled by miners or obtained 

by attackers during transactions, and such random numbers are to some extent predictable or collidable. 

2.4. Transaction-Ordering Dependence 

In the process of transaction packing and execution, when faced with transactions of the same difficulty, 

miners tend to choose the one with higher gas cost to be packed first, so users can specify a higher gas cost to 

have their transactions packed and executed first. 

2.5. DoS(Denial of Service) 

DoS, or Denial of Service, can prevent the target from providing normal services. Due to the immutability of 

smart contracts, this type of attack can make it impossible to ever restore the contract to its normal working 

state. There are various reasons for the denial of service of a smart contract, including malicious revert when 

acting as the recipient of a transaction, gas exhaustion caused by code design flaws, etc. 

2.6. Function Call Permissions 

If smart contracts have high-privilege functions, such as coin minting, self-destruction, change owner, etc., 

permission restrictions on function calls are required to avoid security problems caused by permission leakage. 

2.7. call/delegatecall Security 

Solidity provides the call/delegatecall function for function calls, which can cause call injection vulnerability 

if not used properly. For example, the parameters of the call, if controllable, can control this contract to 

perform unauthorized operations or call dangerous functions of other contracts. 

2.8. Returned Value Security 

In Solidity, there are transfer(), send(), call.value() and other methods. The transaction will be rolled back if 

the transfer fails, while send and call.value will return false if the transfer fails. If the return is not correctly 



 

judged, the unanticipated logic may be executed. In addition, in the implementation of the 

transfer/transferFrom function of the token contract, it is also necessary to avoid the transfer failure and return 

false, so as not to create fake recharge loopholes. 

2.9. tx.origin Usage 

The tx.origin represents the address of the initial creator of the transaction. If tx.origin is used for permission 

judgment, errors may occur; in addition, if the contract needs to determine whether the caller is the contract 

address, then tx.origin should be used instead of extcodesize. 

2.10. Replay Attack 

A replay attack means that if two contracts use the same code implementation, and the identity authentication 

is in the transmission of parameters, the transaction information can be replayed to the other contract to 

execute the transaction when the user executes a transaction to one contract. 

2.11. Overriding Variables 

There are complex variable types in Solidity, such as structures, dynamic arrays, etc. When using a lower 

version of the compiler, improperly assigning values to it may result in overwriting the values of existing state 

variables, causing logical exceptions during contract execution. 

  



 

Appendix 3 Disclaimer 

This report is made in response to the project code. No description, expression or wording in this report shall 

be construed as an endorsement, affirmation or confirmation of the project. This audit is only applied to the 

type of auditing specified in this report and the scope of given in the results table. Other unknown security 

vulnerabilities are beyond auditing responsibility. Beosin Technology only issues this report based on the 

attacks or vulnerabilities that already existed or occurred before the issuance of this report. For the emergence 

of new attacks or vulnerabilities that exist or occur in the future, Beosin Technology lacks the capability to 

judge its possible impact on the security status of smart contracts, thus taking no responsibility for them. The 

security audit analysis and other contents of this report are based solely on the documents and materials that 

the contract provider has provided to Beosin Technology before the issuance of this report, and the contract 

provider warrants that there are no missing, tampered, deleted; if the documents and materials provided by the 

contract provider are missing, tampered, deleted, concealed or reflected in a situation that is inconsistent with 

the actual situation, or if the documents and materials provided are changed after the issuance of this report, 

Beosin Technology assumes no responsibility for the resulting loss or adverse effects. The audit report issued 

by Beosin Technology is based on the documents and materials provided by the contract provider, and relies 

on the technology currently possessed by Beosin. Due to the technical limitations of any organization, this 

report conducted by Beosin still has the possibility that the entire risk cannot be completely detected. Beosin 

disclaims any liability for the resulting losses. 

The final interpretation of this statement belongs to Beosin Technology. 

  



 

Appendix 4 About Beosin 

BEOSIN is a leading global blockchain security company dedicated to the construction of blockchain security 

ecology, with team members coming from professors, post-docs, PhDs from renowned universities and elites 

from head Internet enterprises who have been engaged in information security industry for many years. 

BEOSIN has established in-depth cooperation with more than 100 global blockchain head enterprises; and has 

provided security audit and defense deployment services for more than 1,000 smart contracts, more than 50 

blockchain platforms and landing application systems, and nearly 100 digital financial enterprises worldwide. 

Relying on technical advantages, BEOSIN has applied for nearly 50 software invention patents and copyrights. 

 



 

 

 

Official Website 

https://beosin.com 

Twitter 

https://twitter.com/Beosin_com 

 

 


	Risk Descriptions and Fix Results
	[Token-1 Critical] BURNER_ROLE has high permissions

	Other Audit Items Descriptions
	Appendix 1 Vulnerability Severity Level
	Appendix 2 Description of Audit Categories
	Appendix 3 Disclaimer
	Appendix 4 About Beosin

